《圆柱的表面积》教学设计

时间:2025-06-20 11:11:27
《圆柱的表面积》教学设计(精华)

《圆柱的表面积》教学设计(精华)

作为一名老师,常常要写一份优秀的教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么问题来了,教学设计应该怎么写?以下是小编为大家收集的《圆柱的表面积》教学设计,希望对大家有所帮助。

《圆柱的表面积》教学设计1

教学内容:

小学数学第十二册教材P33~P34

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:

圆柱形物体、学具、多媒体课件

教学重点:

圆柱侧面积的计算方法推导。

教学过程:

一、猜测面积大小,激发情趣导入

1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

2、这两个圆柱谁的侧面积谁大?为什么?

3、复习:圆柱的侧面积=底面周长×高

刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

二、组织动手实践,探究圆柱表面积

1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

2、你们觉得这两个圆柱谁的表面积大?为什么?

生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

生:计算的方法

师:怎么计算圆柱的表面积呢?

圆柱的表面积=侧面积+两个底面的面积 (板书)

4、那现在你们就算算这两个圆柱的表面积是多少?

生:(不知所措)没有数字怎么算啊?

师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

生1:我想知道圆柱体的底面半径和高。

生2:我想知道圆柱体的底面直径和高。

生3:我想知道圆柱体的底面周长和高。

师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

5、汇报展示:

情况一:半径:31.4÷3.14÷2=5(cm)

底面积:3.14×5×5=78.5(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+78.5×2=748.576(平方厘米)

情况二:半径:18.84÷3.14÷2=3(cm)

底面积:3.14×3×3=28.26(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+28.26×2=648.096(平方厘米)

师:通过我们计算验证了我们刚才的判断是正确的。

接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

生2:这样做挺麻烦的有没有更简单一点的方法呢?

6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

问:这个近似的'长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

所以圆柱体表面积=长方形面积=底面周长×(高+半径)

用字母表示:S=C×(h+r)

我们用这个方法来验证一下我们的例2看是不是比原来简单?

汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

三、 分组闯关练习

1、多媒体出示题目。

第一关(填空)

沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

第二关

一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

第三关(用你喜欢的方法完成下面各题)

一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

2、汇报结果,给予评价。

我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

四、 质疑(同学们还有什么疑问吗?)

五、反馈小结:

教学反思

1、 自主探究,体验学习乐趣

以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

2、合作交流,加深对知识的理解深度。

给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《圆柱的表面积》教学设计2

  教学内容:九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

教学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

圆柱形的物体,圆柱侧面的展开图

  教学重点:理解圆柱侧面积和圆柱表面积的 ……此处隐藏18412个字……/p>

(1)测量的数据

(2)计算过程及结果

《圆柱的表面积》教学设计15

一、引入新课:

1.引入。

师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)

2.激发兴趣。

【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?

师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”

师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)

二、探究新知。

1.什么是“圆柱的表面积”?

师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)

师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?

(生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)

师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”

师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积

也就是说,要求圆柱的.表面积,必须知道哪两个条件?

2。圆柱的侧面积。

师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)

①合作探究。

“请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?

学生分组探究。

②汇报交流。★※★※★

师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。

③.【课件演示变化过程】★师解说。

(贴出:圆柱的侧面积=底面周长×高 )

强化:“要求圆柱的侧面积,必须知道什么条件?”

3.学习例1。【课件出示】

一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)

一人板演,全班齐练。

板演者讲解题思路。集体订正。

小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。

4.计算圆柱的侧面积。

请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。

【课件出示】

5.学习例2。

师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?

①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?

【课件出示例2图】

②独立试算:(一个板演,全班齐练。)

③指名讲解题思路。

④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。

⑤扩展:

a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?

【课件出示例2改后的题】

b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?

【课件出示例2改后的题】

学生口算。

★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”

【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?

d.指名说解题思路。

三.实际应用。

【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?

②强调“没盖”,“得数保留整百平方厘米。”

③独立计算。

④板演者讲解题思路。(讲清每步算的是什么)

⑤了解“进一法”。

★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”

⑥举一反三

师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?

【课件出示】

★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。

四.巩固练习。

1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)

2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?

3.回到引入题。

【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?

如果要制作200个呢?制作1000个呢?

想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?

师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?

五.实践应用。

师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)

“现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”

六.全课小结:

师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?

师:你有没有想提醒同学们注意的地方?

教学目标:

1.知识目标:

⑴.理解圆柱的侧面积和表面积的含义。

⑵.掌握圆柱侧面积和表面积的计算方法。

⑶.会正确计算圆柱的侧面积和表面积。

2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备:

1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。

2.多媒体课件。

《《圆柱的表面积》教学设计(精华).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式